

1. Identificación

1.1. De la Asignatura

Curso Académico	2022/2023
Titulación	GRADO EN BIOQUÍMICA
Nombre de la Asignatura	ESPECTROSCOPÍA DE BIOMACROMOLÉCULAS
Código	1766
Curso	SEGUNDO
Carácter	OBLIGATORIA
N.º Grupos	1
Créditos ECTS	6
Estimación del volumen de trabajo del alumno	150
Organización Temporal/Temporalidad	2 Cuatrimestre
Idiomas en que se imparte	ESPAÑOL
Tipo de Enseñanza	Presencial

1.2. Del profesorado: Equipo Docente

Coordinación	Área/Departamento	QUÍMICA INORGÁNICA/QUÍMICA INORGÁNICA			
de la asignatura	Categoría		CATEDRATICOS	DE UNIVERSIDAD	
ANTONIO	Correo Electrónico /		adonaire@um.es		
DONAIRE	Página web / Tutoría		http://webs.um.es/adonaire/		
GONZALEZ	electrónica	Tutoría Electrónica: SÍ			
Grupo de	Teléfono, Horario y	Duración	Día	Horario	Lugar
Docencia: 1	Lugar de atención al	Segundo	Lunes	12:00- 14:00	868884627,
Coordinación	alumnado	Cuatrimestre			Facultad de
de los grupos:1					Química B1.0.026
		Segundo	Martes	12:00- 14:00	868884627,
		Cuatrimestre			Facultad de
					Química B1.0.026

1

JOSE ANTONIO	Área/Departamento	QUÍMICA INORGÁNICA/QUÍMICA INORGÁNICA			
GARCIA LOPEZ	Categoría		INVESTIGADOR "	RAMON Y CAJAL"	
Grupo de	Correo Electrónico /		joangalo	@um.es	
Docencia: 1	Página web / Tutoría		https://www	/.um.es/gqo	
	electrónica		Tutoría Elec	ctrónica: NO	
	Teléfono, Horario y	Duración	Día	Horario	Lugar
	Lugar de atención al	Segundo	Lunes	12:00- 14:00	868884143,
	alumnado	Cuatrimestre			Facultad
					de Química
					B1.3B.030
		Segundo	Martes	12:00- 14:00	868884143,
		Cuatrimestre			Facultad
					de Química
					B1.3B.030

2. Presentación

El principal objetivo de la asignatura es el conocimiento de las técnicas espectroscópicas más relevantes para la determinación estructural, dinámica, termodinámica y cinética de las macromoléculas biológicas, principalmente proteínas y ácidos nucleicos. Se impartirán los principios físicos en los que se basan las técnicas, pero fundamentalmente se incidirá en la información que cada técnica puede proporcionar sobre los sistemas biológicos de estudio, así como el modo de obtenerla. Se incidirá también en el aspecto práctico de las técnicas: el alumno debe conocer cómo se trabaja con cada técnica, la preparativa y condiciones de las muestras en cada caso y el análisis, a nivel básico, de los espectros obtenidos.

3. Condiciones de acceso a la asignatura

3.1 Incompatibilidades

No consta

3.2 Recomendaciones

No existen incompatibilidades para cursar esta asignatura. Es muy recomendable haber superado todas las asignaturas de primer curso. Las técnicas espectroscópicas proporcionan información mediante la interacción de la radiación con la materia. Deben conocerse, pues, las características básicas de dicha radiación así como las leyes que rigen su comportamiento, lo que se estudia en Física. Es esencial, asimismo, conocer el tipo de enlaces, moléculas y estructuras que nos vamos a encontrar en los sistemas de estudio, que se deben conocer de asignaturas previas como la Química, la Bioquímica y Biología del primer curso.

4. Competencias

4.1 Competencias Básicas

- · CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio
- · CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
- · CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
- · CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado

4.2 Competencias de la titulación

- · CG2. Capacidad de organización y planificación de los estudios y enseñanzas bioquímicas o de sanidad animal y humana recibidas.
- · CG1. Capacidad de análisis y síntesis en los diferentes temas de tipo bioquímico y de áreas relacionadas.
- · CG3. Capacidad de dividir, analizar y resolver problemas de tipo bioquímico, químico o de diagnóstico.
- · CG4. Diseñar experimentos y comprender las limitaciones de la aproximación experimental, así como sus posibles aplicaciones a casos bioquímicos o biomédicos
- · CG5. Diseñar estrategias experimentales con distintas etapas para la solución de un problema bioquímico o de áreas afines al Grado y sus posibles soluciones.
- · CG6. Interpretar resultados experimentales e identificar elementos consistentes e inconsistentes de cualquier experiencia realizada; capacidad de modificación y diseño de nuevos experimentos en función de resultados parciales obtenidos.
- · CG7. Trabajar de forma adecuada en un laboratorio químico, bioquímico y/o biológico incluyendo seguridad, manipulación y eliminación de residuos químicos y/o biológicos, y registro anotado de actividades.
- · CG8. Aplicar las bases legales y éticas implicadas en el desarrollo de las ciencias moleculares de la vida (íntimamente ligada a la competencia CTUM4).

- · CG9. Reconocer los problemas ecológicos-ambientales en el desarrollo y aplicación de las ciencias moleculares de la vida, así como capacidad de búsqueda de alternativas más positivas desde el punto de vista medioambiental.
- · CG10. Pensar de una forma integrada y abordar los problemas desde diferentes perspectivas tanto en el plano técnico-profesional (bioquímico, biomédico o de diagnóstico) como en relación con los problemas sociales/económicos que implican a un bioquímico.
- · CG11. Usar Internet como medio de comunicación y como fuente de información, sabiendo discriminar entre información y opinión en el ámbito bioquímico o biomédico (íntimamente ligada a la competencia CTUM3).
- · CG12. Tomar decisiones relativas a cuestiones de tipo bioquímico o relacionadas con la sanidad animal o humana que impliquen o tengan consecuencias en un grupo o colectividad determinada.
- · CG14. Razonamiento crítico en cualquier tema de tipo bioquímico o de diagnóstico, en particular, o científico en general que repercuta en las posibles soluciones del problema.
- · CG16. Adaptación a nuevas situaciones de tipo bioquímico, de diagnóstico o profesional que requieran una visión diferente a las previamente establecidas o estudiadas.
- · CG17. Creatividad en los planteamientos y en las soluciones a temas y problemas de carácter bioquímico o de áreas directamente relacionados con el Grado que puedan surgir durante cualquier etapa del desarrollo del aprendizaje.
- · CG19. Motivación por la calidad en cualquier tipo de actividad a realizar, inculcando el trabajo científico metodológico, detallado y solvente.
- · CE2. Entender y saber explicar las bases físicas y químicas de los procesos bioquímicos y de las técnicas utilizadas para investigarlos.
- · CE14. Conocer los principios y aplicaciones de los métodos e instrumentación utilizados en las determinaciones biomédicas y el análisis de alimentos.
- · CE19. Conocer los fundamentos y aplicaciones de las tecnologías ómicas, y saber buscar, obtener e interpretar la información de las principales bases de datos biológicos (genómicos, transcriptómicos, proteómicos, metabolómicos, etc.) y datos bibliográficos.
- · CE20. Saber diseñar y realizar un estudio en el ámbito de la Bioquímica y la Biomedicina Molecular, y ser capaz de analizar críticamente los resultados obtenidos.

4.3 Competencias transversales y de materia

- · Competencia 1. CT1: Ser capaz de expresarse correctamente en lengua castellana en su ámbito disciplinar
- · Competencia 2. CT2: Comprender y expresarse en un idioma extranjero en su ámbito disciplinar, particularmente el inglés
- · Competencia 3. CT3: Ser capaz de gestionar la información y el conocimiento en su ámbito disciplinar, incluyendo saber utilizar como usuario las herramientas básicas en TIC
- · Competencia 4. CT4: Considerar la ética y la integridad intelectual como valores esenciales de la práctica profesional
- · Competencia 5. CT5: Ser capaz de proyectar los conocimientos, habilidades y destrezas adquiridos para promover una sociedad basada en los valores de la libertad, la justicia, la igualdad y el pluralismo
- · Competencia 6. CT6: Ser capaz de trabajar en equipo y relacionarse con otras personas del mismo o distinto ámbito profesional
- · Competencia 7. CT7: Desarrollar habilidades de iniciación a la investigación

Contenidos

TEMA 1. La radiación electromagnética y su interacción con la materia.

- Espectro electromagnético: energía y sus unidades.
- Transiciones observadas y tipos de espectroscopías.

TEMA 2. Espectroscopía de absorbancia Uv-visible

- Energía, longitud de onda y frecuencias de las regiones visible y ultravioleta.
- Saltos electrónicos de las moléculas. Absorción.
- Espectros Uv-visible.
- Ley de Lambert-Beer.
- Absorbancia de proteínas y ácidos nucleicos.

TEMA 3. Espectroscopía de fluorescencia

- Relajación electrónica.
- Diagramas de Jablonski.
- Sensibilidad en fluorescencia. Rendimiento cuántico: factores que lo determinan.
- Fuorescencia en proteínas.
- Sondas fluorescentes extrínsecas utilizadas en Bioquímica.

TEMA 4. Dicroísmo Circular

- Quiralidad de moléculas: dispersión óptica rotatoria.
- Absorbancia y quiralidad: efecto Cotton.
- Dicroísmo circular de proteínas: ultravioleta lejano y estructuras secundarias; ultravioleta cercano; cromóforos quirales en proteínas.
- Ácidos nucleicos.
- Interacción ligando/proteína o ligando/ác. nucleico seguida por CD.
- Procesos de desplegamiento.

TEMA 5. Espectroscopía Infrarroja

- Espectros de infrarrojos y modos vibracionales.
- Grupos funcionales orgánicos y bandas vibracionales características.
- Espectros IR en proteínas: bandas amida I y II.
- Efecto de intercambio isotópico.

TEMA 6. Estructura en disolución: Resonancia Magnética Nuclear.

- Principios físicos de la RMN.
- Parámetros de RMN: desplazamiento químico, área, constantes de acoplamiento.
- RMN bidimensional: acoplamiento escalar (COSY, TOCSY); acoplamiento dipolar (NOESY).
- RMN en proteínas: desplazamientos típicos de protones en proteínas; proteínas plegada/desplegada, tamaño molecular y espectros 1H RMN; efecto del disolvente (deuteración).

TEMA 7. Estructura en estado cristalino: Difracción de Rayos-X.

- Rayos X, interacción con la materia.
- Cristales.
- Mapas de densidad electrónica.
- Resolución.
- Rayos X en ácidos nucleicos: la doble hélice.
- Estructuras de proteínas en ficheros del Banco de Datos de Proteínas.

TEMA 8. Espectrometría de masas

- Espectros de masas.
- Masa molecular.
- Tipos de espectros de masas.

PRÁCTICAS

Práctica 1. Medios informáticos: información sobre los sistemas. Simulaciones.: Relacionada con los contenidos Tema 7,Tema 1,Tema 2,Tema 3,Tema 4 y Tema 6

- Búsqueda de bibliografía y datos básicos sobre los sistemas (proteínas) de estudio.
- Simulaciones de espectros ultravioleta-visible, de fluorescencia y de dicroísmo circular.
- Interpretación de espectros 1H RMN.

Práctica 2. Absorbancia Uv-visible.: Relacionada con los contenidos Tema 1 y Tema 2

- Realización de espectros en el visible y en el ultravioleta.
- Determinación de concentraciones de proteínas y plásmidos.
- Determinación de concentraciones de metaloproteínas en el ultravioleta y en el visible: comparación de resultados.
 - Metalación y oxidación-reducción de proteínas redox.
 - Cinética de formación de una holoproteína.
 - Desplegamiento de ubiquitina seguido por absorbancia ultravioleta.

Práctica 3. Fluorescencia.: Relacionada con los contenidos Tema 1,Tema 2 y Tema 3

- Preparación de muestras para fluorescencia.
- Espectros de excitación y de emisión de tirosina y triptófano en disolventes con diferente polaridad.
- Seguimiento de desnaturalización de proteínas en cloruro de guanidinio.
- Comparación de la estabilidad de una metaloproteína en presencia y ausencia del metal y a diferentes concentraciones de cloruro de guanidinio.
 - Desnaturalización de ubiquitina a alto pH seguido por fluorescencia.

Práctica 4. Dicroísmo circular: Relacionada con los contenidos Tema 1,Tema 2 y Tema 4

- Preparación de muestras para la realización de espectros de dicroísmo circular.
- Realización de espectros CD de proteínas nativa, en presencia de agente inductor de hélices-alfa y de agentes desnaturalizantes.

Práctica 5. Resonancia Magnética Nuclear: Relacionada con los contenidos Tema 1, Tema 2 y Tema 6

- Preparación de una muestra para su estudio por RMN.

6. Metodología Docente

Actividad Formativa	Metodología	Horas Presenciales	Trabajo Autónomo	Volumen de trabajo
	Lecciones magistrales. Los			
Asistencia y participación	ficheros pdf que se proporcionarán	33	37	70
en clases teóricas	a los alumnos (figuras, tablas,			
	esquemas,) estarán en inglés.			
	Problemas. Controles tipo test para			
Asistencia y participación	cada tema. Se realizarán controles	6	3	9
en seminarios/ talleres	presenciales de respuestas V/	0	3	ğ
	F en un determinado tiempo.			
Asistencia y participación en	Realización de ensayos	40	42	24
clases prácticas de laboratorio	experimentales en el laboratorio.	12	12	24
	Preguntas cuestiones concretas.			
	Mediante herramientas tipo wooclap			
T. / 5070	se preguntará a los alumnos mientras			
Tutoría ECTS	se producen las explicaciones para	3	3	6
	comprobar el seguimiento de las			
	mismas por parte del alumnado.			
Realización de las	Dealth aife de annah a sanita		20	20
pruebas de evaluación.	Realización de pruebas escritas.	2	30	32
	Prácticas con ordenador. Las prácticas			
	con ordenador podrán llevarse			
Asistencia y participación	a cabo mediante la plataforma			
en clases prácticas	eva.um.es bien desde la microaula	4	5	9
con ordenadores en	o, en su caso y en función de la			
aula de informática.	disponibilidad de las mismas, desde			
	ordenadores propios de los alumnos.			
	Total	60	90	150

7. Horario de la asignatura

https://www.um.es/web/estudios/grados/bioquimica/2022-23#horarios

8. Sistema de Evaluación

Métodos / Instrumentos	Pruebas escritas (exámenes): pruebas objetivas, de desarrollo, de respuesta corta, de ejecución
	de tareas, de escala de actitudes realizadas por los alumnos para mostrar los conocimientos
	teóricos y prácticos adquiridos.
Criterios de Valoración	Al final del curso se realizará una evaluación que se compondrá de 30 preguntas tipo test, con
	un valor del 67% del examen, y 2 preguntas a desarrollar, cuyo valor será el 33% restante. Para
	poder promediar el examen será imprescindible obtener un mínimo de 4,0 puntos sobre 10 en las
	dos partes del examen por separado. Cada pregunta tipo test tendrá cuatro respuestas posibles,
	siendo sólo una correcta. Una respuesta positiva en cada pregunta en el examen tipo test tendrá
	un valor de 1 punto, que se normalizará al 67% respecto al examen total. La incidencia del acierto
	al azar será corregida mediante una proporción 1:4, es decir, cada pregunta errónea restará 0.25
	puntos, respecto al examen tipo test.
	La parte de preguntas a desarrollar (33%) serán cuestiones breves de responder en las que el
	alumno deberá demostrar su conocimiento de las técnicas estudiadas y relacionarlas entre sí,
	análisis simples y concretos de espectros, así como, en su caso, la resolución de problemas.
	Para poder promediar este examen con el resto de la evaluación de la asignatura será necesario
	obtener un mínimo de 4,0 puntos en esta prueba escrita. La nota conseguida en esta prueba
	contribuirá en un 60 % a la nota final de la asignatura.
	En las convocatorias extraordinarias se evaluarán las mejoras alcanzadas por los alumnos
	mediante una prueba escrita que ponderará con el 60% de la calificación final. Los estudiantes
	podrán presentar trabajos o informes encargados por el equipo docente que se evaluarán para
	mejorar las calificaciones obtenidas en los seminarios y tutorías durante el curso regular.
Ponderación	60

Métodos / Instrumentos	Informes escritos, trabajos y proyectos: trabajos escritos, portafolios, etc., con independencia de
	que se realicen individual o grupalmente.
Criterios de Valoración	En los seminarios se realizará una evaluación continua de las competencias transversales, así
	como de las competencias específicas mediante ejercicios, problemas y cuestiones tipo test. Su
	asistencia será obligatoria. El alumno deberá entregar los trabajos y actividades solicitadas por
	el profesor. La calificación de los mismos contribuirá en un 10% a la nota final.
	El enunciado de estos trabajos se les entregará a los alumnos en inglés y el alumno deberá
	responderlos en inglés en los apartados que el profesor indique.
	La asistencia a las actividades realizadas por la Facultad de Química (conferencias, charlas
	informativas, etc.) podrá ser tenida en cuenta como una actividad adicional y evaluable de los
	seminarios de la asignatura, si procede.
Ponderación	10

Métodos / Instrumentos	Ejecución de tareas prácticas: realización de actividades encaminadas a que el alumno muestre
	el saber hacer en una disciplina determinada.
Criterios de Valoración	La asistencia a las prácticas tanto de laboratorio como de análisis de espectros y simulación por
	ordenador será obligatoria para el estudiante. Se proporcionará un guion de prácticas en inglés.
	Para la asistencia a las sesiones de prácticas es imprescindible la bata y un cuaderno de
	laboratorio (no se admiten hojas sueltas) que el alumno deberá llevar siempre consigo y que
	podrá ser pedido y revisado por el profesor en cualquier momento de las prácticas. Por razones
	de seguridad los alumnos deberán llevar también gafas de seguridad y, en caso de que tengan
	pelo largo, deberán llevarlo recogido.
	El laboratorio está estructurado en cuatro sesiones. La no asistencia a alguna sesión sin causa
	justificada conllevará el suspenso en la asignatura. La no asistencia a una de las sesiones
	(siempre por causa justificada) supondrá una penalización de un 20% de la nota. En cualquier
	caso, deberá siempre justificarse esa inasistencia y se intentará recuperar en posteriores grupos.
	La no asistencia a dos o más sesiones supondrá el suspenso automático de la asignatura.
	Se valorará la aptitud y actitud del estudiante en el laboratorio, su interés, sus respuestas y
	participación a las cuestiones que se hagan durante las prácticas. Este apartado supondrá un
	10% de la nota.
	Al finalizar las prácticas se entregará un informe, al que se responderá en inglés en los apartados
	específicos indicados por el profesor, y se realizará un ejercicio escrito tipo test sobre las mismas.
	Este examen constará de 20 preguntas con cuatro respuestas posibles y una, sólo una, correcta.
	Cada pregunta correcta valdrá 0.5 puntos sobre la nota final de este examen, mientras que la
	pregunta incorrecta restará 0,125 puntos. Los alumnos podrán tener el informe de prácticas (no
	el guion) delante durante el examen.
	La nota de este examen constituirá el 60% de la nota de prácticas, siempre y cuando se haya
	obtenido un mínimo de 4,0 puntos en este examen.
	La nota del informe constituirá un 30% de la nota de prácticas, siempre y cuando se haya obtenido
	un mínimo de 4,0 puntos en este informe.

s imprescindible haber aprobado las prácticas para aprobar la asignatura. La suspensión de s prácticas en una convocatoria conlleva, automáticamente, el suspenso de la asignatura en misma convocatoria.
misma convocatoria.
a nota de prácticas supondrá un 25 % de la nota final de la asignatura, siempre y cuando se
ayan aprobado.
25
rocedimientos de observación del trabajo del estudiante: registros de participación, de
alización de actividades, cumplimiento de plazos, participación en foros
e potenciará la participación en clase de los alumnos mediante preguntas directas del profesor
estos y herramientas tipo wooclap, así como problemas a realizar en casa. Las respuestas de
s alumnos serán evaluadas positivamente, en su caso, en la puntuación final.
5
rc e e

Fechas de exámenes

https://www.um.es/web/estudios/grados/bioquimica/2022-23#examenes

9. Resultados del Aprendizaje

- Conocer los fundamentos teóricos las diferentes técnicas espectroscópicas (fluorescencia, dicroísmo circular, RMN, FTIR, etc.) aplicadas en el análisis de biomacromoléculas, e interpretar los espectros
- Demostrar conocimiento de las bases y principales aplicaciones de la citometría de flujo e interpretar los resultados de experimentos con 1 o 2 fluorescencias mediante software adecuado.
- Conocer bien las bases de la secuenciación de DNA y proteínas.
- Demostrar buen conocimiento de las técnicas más adecuadas a utilizar para el estudio cuantitativo de un supuesto proceso biológico sencillo en el que se produzcan cambios en los niveles de RNAs, proteínas, carbohidratos, lípidos y en el estudio de la replicación del DNA.
- Conocer la difracción de rayos X y su aplicación en la resolución de estructuras 3-D de las biomacromoléculas.

 Determinar, ante un problema concreto relativo a una macromolécula biológica o interacción entre varias de ellas, la técnica o técnicas espectroscópicas idóneas para abordar su solución y, en su caso, resolver dicho problema satisfactoriamente.

10. Bibliografía

Bibliografía Complementaria

Campbell, I.D., Dwek, R., (1984) "Biological Spectroscopy", Menlo Park, Ed. Benjamin/Cummings.

Methods in Enzymology, Vol. 246: "Biochemical Spectroscopy", Ed. K. Sauer Academic Press, San Diego, 1995.

Hammes, G.G. (2005) "Spectroscopy for the Biological Sciences" New Jersey, Ed. John Wiley & Sons, Inc

Gómez-Moreno, C., Sancho Sanz, J. (2003) "Estructura de proteínas", Barcelona, Ed. Ariel. https://alejandria.um.es/cgi-bin/abnetcl/O7026/ID5a9d5a98/NT12

Drago, R. S..(1992) "Physical methods for chemists". 2nd. Saunders College Pub. http://r.takjoo.profcms.um.ac.ir/imagesm/1006/stories/Spectroscopy/93/drago_physicalmethodsforchemists 2e.pdf

Bibliografía recomendada

Skoog, D.A., Holler, F.J., Nieman, T.A. (2008) "Principios de análisis instrumental", 6ª edición, Madrid, Ed. McGraw-Hill.

Bibliografía recomendada

Serdyuk, I. N., Zaccai, N. R., Zaccai, J., (2007) "Methods in Molecular Biophysics Structure,

Dynamics, Function", New York, Cambridge University Press.

Van Holde, K.E., Johnson, W.C. y Ho, P.S. (1^a ed. 1998, 2^a ed. 2006) "Principles of Physical Biochemistry", Prentice Hall, Upper Saddle River, Nueva Jersey.

Chang, R. (2000) Physical Chemistry for the Chemical and Biological Sciences, 3^a ed., University Science Books. https://alejandria.um.es/cgi-bin/abnetcl/O7015/IDd8d50f7a/NT2

- Tinoco, I., Jr., Sauer, K, Wang, J.C. y Puglisi, J. D. (2002) Physical Chemistry. Principles and Applications in Biological Sciences. Prentice Hall International, Inc. 4ª Ed.
- Engel, T., Hehre, W., (2013) "Qauntum Chemistry and Spectroscopy" Pearson, 3rd edition. https://drive.google.com/drive/folders/0B_EIJ5Q1kec-YnZWOHBseUw4NUE
- Skoog, D.A., Holler, F.J., Nieman, T.A. (2000). Principios de análisis instrumental, 5ª edición, Madrid, Ed. McGraw-Hill

11. Observaciones y recomendaciones

NECESIDADES EDUCATIVAS ESPECIALES. Aquellos estudiantes con discapacidad o necesidades educativas especiales podrán dirigirse al Servicio de Atención a la Diversidad y Voluntariado (ADYV; http://www.um.es/adyv/) para recibir orientación sobre un mejor aprovechamiento de su proceso formativo y, en su caso, la adopción de medidas de equiparación y de mejora para la inclusión, en virtud de la Resolución Rectoral R-358/2016. El tratamiento de la información sobre este alumnado, en cumplimiento con la LOPD, es de estricta confidencialidad.

El inglés es el idioma de comunicación científica. Saber escribir, leer y hablar en inglés es esencial para comprender, aprender y comunicar la Ciencia. El reconocimiento de nuestros Grados con Sellos Internacionales de Calidad (Eur-ACE para el Grado en Ingeniería Química, y Eurobachelor para el Grado en Química) exige que los alumnos deben adquirir competencias y destrezas en inglés para todas nuestras materias. En esta asignatura, se facilitará material docente en inglés, y se exigirá a los estudiantes comprender y/o expresarse en inglés en las actividades previstas en esta Guía Docente.

El plagio y/o copia en cualquier proceso de la evaluación de la asignatura es un comportamiento fuera de toda ética y llevará como consecuencia, de forma automática, el suspenso en la asignatura.

En los procesos de evaluación se seguirá la Normativa de la Facultad de Química de la Universidad de Murcia (ver link) relativa a las acciones contrarias a la ética universitaria."

https://www.um.es/documents/14152/23085107/Normativa+ética+Evaluaciones+FQ+UMU_V02.pdf