

1. Identificación

1.1. De la Asignatura

Curso Académico	2018/2019	
Titulación	MÁSTER UNIVERSITARIO	
litulación	EN MATEMÁTICA AVANZADA	
Nombre de la Asignatura	SISTEMAS DINÁMICOS DISCRETOS	
Código	6366	
Curso	PRIMERO	
Carácter	OPTATIVA	
N.º Grupos	1	
Créditos ECTS	3	
Estimación del volumen de trabajo del alumno	75	
Organización Temporal/Temporalidad	Cuatrimestre	
Idiomas en que se imparte	ESPAÑOL	
Tipo de Enseñanza	Presencial	

1.2. Del profesorado: Equipo Docente

1

Coordinación	Área/Departamento	MATEMÁTICAS				
de la asignatura	Categoría	CATEDRATICOS DE UNIVERSIDAD				
FRANCISCO	Correo	balibrea@um.es				
BALIBREA	Electrónico /	Tutoría Electrónica: SÍ				
GALLEGO	Página web /					
Grupo de	Tutoría electrónica					
Docencia: 1	Teléfono, Horario y	Duración	Día	Horario	Lugar	Observaciones
Coordinación	Lugar de atención	Anual	Martes	13:00- 14:00	868884176,	Despacho
de los grupos:1	al alumnado				Facultad de	0.12, planta 0
					Matemáticas	
					y Aulario	
					General	
					B1.0.042	
		Anual	Miércoles	13:00- 14:00	868884176,	Despacho
					Facultad de	0.12, planta 0
					Matemáticas	
					y Aulario	
					General	
					B1.0.042	
		Anual	Jueves	13:00- 14:00	868884176,	Despacho
					Facultad de	0.12, planta 0
					Matemáticas	
					y Aulario	
					General	
					B1.0.042	

ANTONIO	Área/Departamento	MATEMÁTICAS				
LINERO BAS	Categoría	PROFESORES TITULARES DE UNIVERSIDAD				
Grupo de	Correo	lineroba@um.es				
Docencia: 1	Electrónico /		lineroba	ı@um.es		
	Página web /		Tutoría Ele	ctrónica: NO		
	Tutoría electrónica					
	Teléfono, Horario y	Duración	Día	Horario	Lugar	
	Lugar de atención	Anual	Martes	09:00- 11:00	868883583,	
	al alumnado				Facultad de	
					Matemáticas y	
					Aulario General	
					B1.1.013-2	
		Anual	Miércoles	09:00- 10:00	868883583,	
					Facultad de	
					Matemáticas y	
					Aulario General	
					B1.1.013-2	
		Anual	Jueves	11:00- 14:00	868883583,	
					Facultad de	
					Matemáticas y	
					Aulario General	
					B1.1.013-2	

2. Presentación

Esta asignatura pretende acercar a los estudiantes en algunos a los tópicos más importantes de la teoría de sistemas dinámicos discretos, área de investigación de gran relevancia en la actualidad tanto por la riqueza de sus contenidos teóricos como por su utilidad en las ciencias aplicadas.

A fin de que los contenidos sean asequibles a un amplio espectro de alumnos (no olvidemos que algunos de ellos no tienen por qué ser, a priori, graduados o licenciados en matemáticas) se ha diseñado un temario de

perfil bajo, que no requiere más prerrequisitos que una buena base en análisis real. Ello no supone merma alguna en el interés de los contenidos a tratar, que cubrirán, entre otras, cuestiones tan significativas y atractivas como la resolución explícita de ecuaciones en diferencias en el caso lineal, la atracción global y local, la periodicidad y el caos, así como algunas aplicaciones a problemas de las ciencias.

3. Condiciones de acceso a la asignatura

3.1 Incompatibilidades

No consta

3.2 Recomendaciones

Estrictamente hablando solo es imprescindible una base razonable de análisis real en una variable, pero es recomendable haber seguido cursos de ecuaciones diferenciales ordinarias, de topología y de análisis real en varias variables. Como ideal se propone el haber realizado un curso de teoría cualitativa de ecuaciones diferenciales.

4. Competencias

4.1 Competencias Básicas

- · CB6. Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación
- · CB7. Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
- · CB9. Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
- · CB10. Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

4.2 Competencias de la titulación

- · CG1. Ser capaz de aplicar técnicas matemáticas de investigación en diversos campos, tanto de matemática fundamental como aplicada.
- · CG4. Ser capaz de aplicar los conocimientos adquiridos para resolver problemas en entornos nuevos o poco conocidos tanto en matemáticas como en contextos más generales o multidisciplinares que estén relacionados con su especialidad. (Meces/BOE (a)).
- · CG5. Ser capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios y conjeturas a partir de información incompleta o limitada en la aplicación de técnicas y conocimientos matemáticos. (Meces/BOE (b)).

- · CG6. Saber comunicar conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades. (Meces/BOE (c))
- · CG7. Poseer habilidades de aprendizaje que permitan continuar futuros estudios de forma autodirigido o autónoma. (Meces/BOE (d))
- · CG8. Ser capaz de trabajar en grupo y en equipos multidisciplinares.
- · CE1. Poseer conocimientos teóricos y prácticos de un área de conocimiento de matemáticas para poder acceder a los estudios de doctorado y realizar una tesis doctoral.
- · CE2. Ser capaz de leer críticamente trabajos especializados o de investigación e incorporar los resultados a su trabajo.
- · CE3. Ser capaz de abstraer y analizar información sobre diversos procedimientos, y de realizar razonamientos lógicos e identificar errores.
- · CE5. Ser capaz de modelar matemáticamente problemas teóricos o reales.
- · CE6. Conocer técnicas de resolución y ser capaz de idear procedimientos de resolución de los modelos matemáticos objetos de estudio.
- · CE7. Manejar las herramientas informáticas que sirven de ayuda a la resolución de los problemas objeto de estudio.

4.3 Competencias transversales y de materia

- Competencia 1. Dominar la noción de sistema dinámico, en particular la de sistema dinámico discreto, y las nociones básicas asociadas.
- Competencia 2. Saber describir ciertos fenómenos de la dinámica de poblaciones en términos de adecuados sistemas dinámicos discretos.
- · Competencia 3. Conocer los aspectos básicos de la dinámica lineal y deducir a partir de esta información el comportamiento local de los sistemas no lineales.
- · Competencia 4. Conocer los posibles conjuntos de periodos para una función continua del intervalo e identificar las consecuencias dinámicas de esta propiedad.
- Competencia 5. Identificar la idea de caos como sensibilidad respecto a las condiciones iniciales y distinguir entre las principales nociones matemáticas del mismo.
- Competencia 6. Apreciar la influencia de la derivabilidad en el estudio de la dinámica de las funciones del intervalo y saber cómo usarla para reconocer cuando un atractor local es global.
- · Competencia 7. Apreciar la utilidad en el estudio de la dinámica de los conjuntos de Cantor.
- · Competencia 8. Identificar los rudimentos y principios básicos de la teoría ergódica.
- · Competencia 9. Saber implementar un sistema dinámico discreto en el ordenador y cómo utilizar esta herramienta para obtener información relevante del mismo.

5. Contenidos

TEMA 1. Introducción a los sistemas dinámicos

Nociones fundamentales: puntos fijos, atracción, estabilidad y repulsión. Sistemas dinámicos discretos.

Ejemplos. Modelos de dinámica de poblaciones.

TEMA 2. Ecuaciones en diferencias lineales

Método de resolución. Sistemas de ecuaciones en diferencias lineales. Aplicaciones.

TEMA 3. Atracción local y global

Teoría local. El teorema de la aplicación contractiva. El teorema de Coppel. El teorema de Singer.

TEMA 4. Periodicidad y caos

El teorema de Sarkovsky. Sensibilidad a las condiciones iniciales. El teorema de Li y Yorke. El papel de los conjuntos de Cantor en la dinámica. La dinámica en casi todo punto: una introducción a la teoría ergódica.

PRÁCTICAS

Práctica 1. La dinámica de la familia logística: Global

Se estudiará, con una herramienta informática adecuada, la rica dinámica de la familia logística, paradigma de la dinámica no lineal en baja dimensión.

Práctica 2. Dinámica de la familia logística bidimensional: Global

Usando el lenguaje R, se harán prácticas con modelo bidimensional asociado a la ecuación logística bidimensional, en particular en lo que se refiere a las bifurcaciones y a la existencia de órbitas periódicas de todos los periodos.

6. Metodología Docente

Actividad	Metodología	Horas	Trabajo	Volumen
Formativa		Presenciales	Autónomo	de trabajo
Lección Magistral		18	27	45
Talleres de		3	6	9
Problemas		3	O	9
Exposiciones orales		3	6	9
Tutorías		1.5	0	1.5
Laboratorio				
de Prácticas		3	3	6
de Informática				
Exámenes		1.5	3	4.5
	Total	30	45	75

7. Horario de la asignatura

http://www.um.es/web/matematicas/contenido/estudios/masteres/matematica-avanzada/2018-19#horarios

8. Sistema de Evaluación

Métodos /	Resolución de problemas/Casos prácticos: Los profesores propondrán problemas/casos	
Instrumentos	prácticos para que sean resueltos por los alumnos (individualmente o en grupo) explicando las	
	soluciones de forma oral y/o escrita.	
Criterios de Valoración	Se realizarán en clase con la prticipación de los alumnos	
Ponderación	30	
Métodos /	Exposición y realización de trabajos: Realización de trabajos, informes y exposición de los	
Instrumentos	resultados obtenidos y los procedimientos usados, así como respuestas razonadas a las posibles	
	cuestiones que se plantee sobre el mismo.	
Criterios de Valoración	Se expondrán en sesiones publicas abiertas	
Ponderación	20	
Métodos /	Pruebas escritas (exámenes): Pruebas objetivas, de desarrollo, de respuesta corta, de ejecución	
Instrumentos	de tareas, de escala de actitudes realizadas por los alumnos para mostrar los conocimientos	
	teóricos y prácticos adquiridos.	
Criterios de Valoración	Se realizará la corrección de los mismos y resolución en el aula de los mismos	
	Un examen final escrito será la prueba de evaluación para los alumnos que no hayan seguido la	
	evaluación continua. Constará de una perte teórica (80% del total) y de un ejercicio práctico en el	
	aula de Informática (20% del total). Esta modalidad se repetirá en sucesivas convocatorias del	
	mismo curso.	
Ponderación	40	
Métodos /	Trabajos del alumno: Trabajos escritos con independencia de que se realicen individual o	
Instrumentos	grupalmente.	
Criterios de Valoración	Corrección de los mismos por el profesor y debate con los autores, también en exposiciones	
	públicas.	
Ponderación	10	

Fechas de exámenes

http://www.um.es/web/matematicas/contenido/estudios/masteres/matematica-avanzada/2018-19#examenes

9. Resultados del Aprendizaje

10. Bibliografía

Bibliografía Básica

- L. S. BLOCK y W. A. COPPEL: Dynamics in one dimension, Springer-Verlag, Berlín, 1992.
- R. DEVANEY: An introduction to chaotic dynamical systems, Westview Press, Boulder. 2003.
- Melo, Welington de. -- One-Dimensional dynamics / (1993)
- Kelley, Walter G. -- Difference equations : an introduction with applications / (2001)

Bibliografía Complementaria

- E. SALINELLI y F. TOMARELLI: Modelli dinamici discreti, Springer-Verlag, Milán, 2014.
- E. SALINELLI y F. TOMARELLI: Modelli dinamici discreti, Springer-Verlag, Milán, 2009.

11. Observaciones y recomendaciones

Aquellos estudiantes con discapacidad o necesidades educativas especiales podrán dirigirse al Servicio de Atención a la Diversidad y Voluntariado (ADYV; http://www.um.es/adyv/) para recibir orientación sobre un mejor aprovechamiento de su proceso formativo y, en su caso, la adopción de medidas de equiparación y de mejora para la inclusión, en virtud de la Resolución Rectoral R-358/2016. El tratamiento de la información sobre este alumnado, en cumplimiento con la LOPD, es de estricta confidencialidad.